硅料回收是指对废弃的硅料进行再利用或处理的过程。硅料是一种重要的材料,广泛应用于电子、光电子、太阳能等领域。由于硅料的高附加值和广泛使用,回收硅料可以减少资源浪费,降低环境污染。
生产电子器件用的硅单晶除对位错密度有一定限制外,不允许有小角度晶界、位错排、星形结构等缺陷存在。位错密度低于 200/厘米2者称为无位错单晶,无位错硅单晶占产量的大多数。在无位错硅单晶中还存在杂质原子、空位团、自间隙原子团、氧碳或其他杂质的沉淀物等微缺陷。微缺陷集合成圈状或螺旋状者称为旋涡缺陷。热加工过程中,硅单晶微缺陷间的相互作用及变化直接影响集成电路的成败。
目前,世界上绝大部分厂家采用传统的改良西门子法生产硅料,作为成熟的技术路线,其降本增效潜力已近极限。作为硅料的保利协鑫十余年如一日,不断寻求技术突破以实现提质增效,其的、具有自主知识产权的硅烷流化床法颗粒硅(FBR法颗粒硅)技术已趋成熟,在产品纯度、能耗、产能等各项指标上,均大幅改良西门子法。
1956年研究成功氢还原三氯氢硅法。对硅中微量杂质又经过一段时间的探索后,氢还原三氯氢硅法成为一种主要的方法。到1960年,用这种方法进行工业生产已具规模。硅整流器与硅闸流管的问世促使硅材料的生产一跃而居半导体材料的。60年代硅外延生长单晶技术和硅平面工艺的出现,不但使硅晶体管制造技术趋于成熟,而且促使集成电路迅速发展。80年代初全世界多晶硅产量已达2500吨。硅还是有前途的太阳电池材料之一。用多晶硅制造太阳电池的技术已经成熟;无定形非晶硅膜的研究进展迅速;非晶硅太阳电池开始进入市场。
在研究和生产中,硅材料与硅器件相互促进。在第二次世界大战中,开始用硅制作雷达的高频晶体检波器。所用的硅纯度很低又非单晶体。1950年制出只硅晶体管,提高了人们制备硅单晶的兴趣。1952年用直拉法(CZ)培育硅单晶成功。1953年又研究出无坩埚区域熔化法(FZ),既可进行物理提纯又能拉制单晶。1955年开始采用锌还原四氯化硅法生产纯硅,但不能满足制造晶体管的要求。
在可再生能源逐渐替代石油能源的今天,进行太阳能电池板的长期回收基础设施建设对加快建设循环经济、真正实现可再生能源和经济的可持续发展,具有重要的意义。